
All of Basic
Categories

Mark Hopkins

@antiselfdual

mjhopkins.github.io

1

https://twitter.com/antiselfdual
https://mjhopkins.github.io


2



GRUPPENPEST

Group theory

3



GRUPPENPEST

Group theory

3



p+ n0 e−

e+

µ−

π+ π0 π−

K+ K− K 0 K̄ 0

Λ0

∆++ ∆+ ∆0 ∆−

Σ+ Σ0 Σ−

Ξ+ Ξ0 Ξ−

Σ∗+ Σ∗0 Σ∗−

Ξ0 Ξ−

Ξ∗0 Ξ∗−

...

4



Eightfold way
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Is CT the Gruppenpest of FP?
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Is CT the Gruppenpest of FP?

• something new to learn

• abstract

• a little scary

• a good model

• helps explain what’s going on

• gives us new tools
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Curry-Howard correspondence

Logic Programming

proposition type

proof program

Logic Programming

F Void

T ()

p ⇒ q p → q

¬p p → Void

p ∧ q (p,q)

p ∨ q Either p q
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Curry-Howard correspondence
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Curry-Howard-Lambek correspondence

Logic Types

Categories

“Computational Trinitarianism”

type theory → categorical model

internal language ← category
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Preliminaries



CAUTION

Ride moves quickly and makes
sharp turns. Please keep arms

and legs within the car and
keep your seatbelt fastened.
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I’ve used category theory. . .

But I’m not a category theorist.
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All of?

The impossible is the only

thing worth attempting.

Raimondo Panikkar
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So we’ll be experts in 30 mins?
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All of
Basic
Categories
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ABCs
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Circle of life

life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension
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Basic

category

theory

Initial objectF -algebra

Universal

property

Universal

arrow

Universal
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Representable

functor
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Lemma
Presheaf

Limit

Product
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Equalizer
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Free
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connection
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All equivalent!
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Categories, functors and natural

transformations



Categories

Ob C : Set

C (a, b) = Hom(a, b) : Set

◦ : C (b, c)× C (a, b)→ C (a, c) 1a ∈ C (a, a)

1b ◦ f = f = f ◦ 1a h ◦ (g ◦ f ) = (h ◦ g) ◦ f
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Commutative diagrams

a

b c

d

f

g

h

k

h ◦ g ◦ f = k
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Opposite category

C op has the same objects as C

C op(a, b) = C (b, a)

Just flip the arrows.
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Networks
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Categories – macroscopic view

Set: sets and functions

Type: types and computable functions

Vect: vector spaces and linear maps

Mon: monoids and monoid maps
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Categories – microscopic view

A category is an algebraic structure in its own right.
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A set is a category with no arrows (except for identities).
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{}

A preorder is a category with at most one arrow between any two

objects.

Write

a ≤ b if Hom(a, b) is not empty. 31



Functors
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Functors

A functor from C → D draws a picture of C in D.

F

F : ObC → ObD

F : C (a, b)→ D(Fa,Fb) i.e. fmap

F (1) = 1

F (f ◦ g) = F (f ) ◦ F (g)
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Functors

Doesn’t have to be an exact copy. It could

• miss some objects (not surjective on objects)

• collapse some objects (not injective on objects)

• miss some arrows in a homset (not full)

• collapse some arrows in a homset (not faithful)
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c l a s s Functor ( f :: ∗ → ∗) where

fmap :: ( a→b ) → f a → f b
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Presheaf

F : C op → Set
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Contravariant functors

A functor from C op → D is called a contravariant functor.

F (f ◦ g) = F (g) ◦ F (f )
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Profunctors

C op × C → Set
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Hom : C op × C → Set

C (−,−) : C op × C → Set

39



a b b’
f

Hom(a, b)

(f ◦−)

−−−−→ Hom(a, b′)

Hom(1, f ) := (f ◦−)
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a b b’
f

Hom(a, b)

(f ◦−)

−−−−→ Hom(a, b′)

Hom(1, f ) := (f ◦−)
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a b b’
f

Hom(a, b)
(f ◦−)−−−−→ Hom(a, b′)

Hom(1, f ) := (f ◦−)
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a ba’
f

Hom(a, b)
(−◦g)−−−−→ Hom(a′, b)

Hom(g , 1) := (− ◦ g)
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Natural transformations

A natural transformation morphs one picture of C into another.
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Natural transformations

We have to move every object, but we need to respect the

morphisms.

Following an arrow, then translating, should be the same as

translating, then following.

a

b

f

Fa

Fb

Ga

Gb

Ff Gf

na

nb

This condition is called naturality.
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In Haskell we approximate naturality with polymorphism (a stricter

condition).

t y p e f  g = ∀ a . f a → g a

44



Initial and terminal objects



{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{}
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1

0
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data Void

a b s u r d :: Void → a

a b s u r d v = c a s e v o f {}
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u n i q u e :: a → ( )

u n i q u e = ( )
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Universal properties



3× 4

X ∩ Y

(a, b)
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3 + 4

X ∪ Y

Either a b
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p(t) = (x(t), y(t))

p : R→ R× R

x , y : R→ R

Hom(R,R)× Hom(R,R) ∼= Hom(R,R× R)
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p(t) = (x(t), y(t))

p : R→ R× R

x , y : R→ R

Hom(R,R)× Hom(R,R) ∼= Hom(R,R× R)
51



Hom(x , a)× Hom(x , b) ∼= Hom(x , a× b)

Hom(a, x)× Hom(b, x) ∼= Hom(a + b, x)
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a b
p

q

f g

A product of a and b

is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .
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a b
p

q

f g

Hom(q, a)× Hom(q, b) ∼= Hom(q, a× b)

A product of a and b is an object p
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a b

s

t

f g

A coproduct of a and b is an object s

with arrows (“injections”) from a and b

such that for any object t with arrows f , g from a and b

there exists a unique arrow from s to t, which has the property

that composing it with the injections gives back f and g .
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a b

s

t

f g

Hom(a, t)× Hom(b, t) ∼= Hom(a + b, t)

A coproduct of a and b is an object s

with arrows (“injections”) from a and b

such that for any object t with arrows f , g from a and b

there exists a unique arrow from s to t, which has the property

that composing it with the injections gives back f and g .
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Products in Type

(&&&) :: ( a→ x ) → ( a→ y )→ a→ ( x , y )

(&&&) f g a = ( f a , g a )

s p l i t :: ( a→ ( x , y ) ) → ( a→ x , a→ y )

s p l i t f = ( f s t . f , snd . f )
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Coproducts in Type

to :: ( x→ a ) → ( y→ a ) → E i t h e r x y → a

to f g e = c a s e e o f

L e f t x → f x

R i g h t y → g x

from :: ( E i t h e r x y → a ) → ( x→a , y→ a )

from h = ( h . L e f t , h . R i g h t )
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Representable functors



Hom(a, x)× Hom(b, x) ∼= Hom(a + b, x)

Hom(x , a)× Hom(x , b) ∼= Hom(x , a× b)

These are isomorphisms of Set-valued functors
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A functor isomorphic to Hom(−, r) or Hom(r ,−)

is called representable.

We say it is represented by r .
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Hom(x , a)× Hom(x , b) ∼= Hom(x , a× b)

Hom(a, x)× Hom(b, x) ∼= Hom(a + b, x)
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Haskell

No sums ⇒ no choices to be made.

A representable functor ≈ a structure with one fixed shape.
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Streams

data Stream a = a :< Stream a

A stream is represented by the natural numbers.

N = 0, 1, 2, 3, . . .

Stream a ∼= Hom(N, a)
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to :: Stream a → ( N a t u r a l→ a )

to s n = s !! n

from :: ( N a t u r a l→ a ) → Stream a

from k = go 0

where

go i = k i :< go ( i +1)

Apply from to id and you get

0, 1, 2, 3, 4, ...

We call this the universal element.

It’s the archetypal stream: the indexing type reified as data.
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“represented by” = “indexed by”
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Tuples

A tuple where both parts have the same type is representable.

(a, a) ∼= Hom (Choice, a)

data Cho ice = L |R

(L,R)
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Binary streams

data Bin a = Bin a ( Bin a ) ( Bin a )

A binary stream is represented by a list of left or right choices.

data Cho ice = L |R

t y p e Path = [ Cho ice ]

[]

[L]

[LL]

...
...

[LR]

...
...

[R]

[RL]

...
...

[RR]

...
...
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Yoneda

Hom (Hom(r ,−),F ) ∼= F (r) F : C → Set

Hom (Hom(−, r),F ) ∼= F (r) F : C op → Set

Why?

It must send 1r : r → r to an element of F (r).

Naturality means there are no more choices to make.

Each element of F (r) defines a natural transformation.
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Limits and colimits



a b
p

q

f g
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F
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? ?

· · ·

F

69



F
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Terminal object

F

71



Equalizer

F f
g
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Equalizer

F
f g
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Equalizer

In Set

{x | f (x) = g(x)}

In Type

t y p e E q u a l i z e r f g x = ( x , f x = g x )
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Pullbacks

F
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Pullbacks

In Set

{(x , y) | f (x) = g(y)}

e.g. f −1(Y ) = {(x , y) | f (x) = y}

In Type

t y p e P u l l b a c k f g x = ( x , y , f x = g y )
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Colimits

Flip everything.
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Coequalizer

In Set

X/f (a) ∼ g(a) for all a
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Pushout

In Set

X t Y /f (a) ∼ g(a) for all a
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A limit is a generalised product
where the projections must
satisfy some compatibility

conditions

A colimit is a generalised sum
where the injections are forced

to agree

80



If we have equalizers and
products,

we can build all limits

If we have coequalizers and
coproducts,

we can build all colimits
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Adjunctions



C D

L

R

D(Lc , d) ∼= C (c ,Rd)
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D(Lc , d) ∼= C (c ,Rd)

Vect
(
F{i , j},R3

) ∼= Set
(
{i , j},UR3

)
 1 4

2 5

3 6

←→
i 7→

 1

2

3

 , j 7→

 4

5

6



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D(Lc , d) ∼= C (c ,Rd)

Type (a× b, c) ∼= Type (a, b → c)

c u r r y :: ( ( a , b ) → c ) → a → b → c

u n c u r r y :: ( a → b → c ) → ( a , b ) → c

84



Right adjoints preserve limits

Left adjoints preserve colimits
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U1 ∼= 1

U(a × b) ∼= U(a)× U(b)

F0 ∼= 0

F (a + b) ∼= F (a) + F (b)
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Monads and comonads



Ends and coends



Limits for profunctors?
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a bf

S(a, a) S(b, b)

S(a, b)

S(1, f ) S(f , 1)
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a b cf g

S(a, a) S(b, b) S(c , c)

S(a, b) S(a, c) S(b, c)
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S(a, a)

S(b, b)

S(a, b)πa πb

!

πa :

∫
c
S(c , c)→ S(a, a)
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S(a, a)

S(b, b)

S(a, b)πa πb

!

πa :

∫
c
S(c , c)→ S(a, a)
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S(a, a)

S(b, b)

S(a, b)πa πb

!

πa :

∫
c
S(c , c)→ S(a, a)
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∫
a
S(a, a) ≈ data End s = End (∀a. s a a)

∫ a

S(a, a) ≈ data Coend s = ∀a. Coend (s a a)

p r o j :: End s → s b b

p r o j ( End x ) = x

i n j :: s b b → Coend s

i n j x = Coend x
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(Co)end calculus

∫
a

∫
b
S(a, a, b, b) ∼=

∫
b

∫
a
S(a, a, b, b) ∼=

∫
(a,b)

S(a, a, b, b)

C

(∫ a

S(a, a), b

)
∼=
∫
a
C (S(a, a), b)

C

(
b,

∫
a
S(a, a)

)
∼=
∫
a
C (b,S(a, a))

F ∼=
∫
c

Hom (C (c ,−),Fc) ∼=
∫ c

F (c)× C (c ,−)
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Natural transformations are ends

Nat(F ,G ) =

∫
s

Hom(Fs,Gs)
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Let’s prove that a → f b and r  f are isomorphic types, where

type r x = (a, b → x).

Set(a,Fb)

∼= Set(a,

∫
x

Set(Set(b, x),Fx)) (Yoneda)

∼=
∫
x

Set(a, Set(Set(b, x),Fx)) (end preserves homsets)

∼=
∫
x

Set(a× Set(b, x),Fx) (uncurry)

∼=
∫
x

Set((a× Set(b,−))x ,Fx) (extract functor)

∼= Nat((a× Set(b,−)),F ) (natural transformations as ends)
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We can use this to show that (a,b → c) is isomomorphic to

∀ f . Functor f ⇒(a → f b) → f c

∫
F

Set(F(G ,F ),HF ) ∼= HG (Yoneda lemma)∫
F

Set(F(G ,F ),Fc) ∼= Gx (choose H = −(c) )∫
F

Set(F(a× Set(b,−),F ),Fc) ∼= (a,Set(b, c)) (set G = (a× Set(b,−)) )

∫
F

Set(Set(a,Fb),Fc)

∼=
∫
F

Set(F((a× Set(b,−)),F ),Fc) (last slide)

∼= (a× Set(b, c)) (line above = Yoneda)
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Lenses

(s → a,a → s → s) ∼= ∀ f . Functor f ⇒(a → f a) → s → f s

96



Kan extensions



C

D

E
F

G K?
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Lan, Ran
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c1 c2 c3 · · ·

C

d

Gc1 Gc2 Gc3 · · ·

D

Ld

Fc1 Fc2 Fc3 · · ·

E
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c1 c2 c3 · · ·
C

d

Gc1 Gc2 Gc3 · · ·
D

Rd

Fc1 Fc2 Fc3 · · ·
E
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(LanG F )(d) =

∫ c

D(Gc , d).Fc

(RanG F )(d) =

∫
c

Hom(D(d ,Gc),Fc)

data Lan g f d = ∀ c . Lan ( g c → d ) ( f c )

newtype Ran g f d = Ran (∀ c . ( d → g c ) → f c )
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The original Kan extension: geometric realisation

{a, b, c}{a, b, d}{a, c , d}{b, c, d}

{a, b}{a, c}{a, d}{b, c}{b, d}{c , d}

{a}{b}{c}{d}

{a, b, c , d} −→

ab

c

d
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Day convolution

F ,G : C → Set

F � G : C × C → Set

(F � G )(c1, c2) := F (c1)× G (c2)

× : C × C → C

F ⊗ G := Lan×�
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data Day f g c

= ∀ c1 c2 . Day ( c1 → c2 → c ) ( f c1 ) ( g c2 )

104



Summary



Themes

• Arrows are more important than objects

• Duality

• Weakening adds structure

• Understanding is hard but proofs are easy c.f. number theory
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Where to from here?

• Enriched categories

• Higher categories

• Topos theory

• . . .
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Further reading/watching

• Eugenia Cheng, The Catsters (YouTube)

• Bartosz Milewski ( videos and blogposts )

• comonad.com (Ed Kmett and Dan Doel)

• Emily Riehl, Category Theory in Context

• Tom Leinster, Basic Category Theory

• David Spivak, Category theory for the sciences

• Lawvere and Schanuel, Conceptual mathematics

• the nLab

107

http://www.youtube.com/user/TheCatsters
https://www.youtube.com/user/DrBartosz/videos
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
http://comonad.com/reader/category/category-theory/
http://www.math.jhu.edu/~eriehl/context/
http://www.maths.ed.ac.uk/~tl/bct/
https://github.com/mmai/Category-Theory-for-the-Sciences
https://www.amazon.com/Conceptual-Mathematics-First-Introduction-Categories/dp/0521894859/
https://ncatlab.org


References

• Categories for the working mathematician

• This is the (co)end, my only (co)friend.

• A representation theorem for second order functionals.

• Notions of computation as monoids.
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