
All of Basic
Categories

Mark Hopkins

@antiselfdual

mjhopkins.github.io

1

https://twitter.com/antiselfdual
https://mjhopkins.github.io

2

GRUPPENPEST

Group theory

3

GRUPPENPEST

Group theory

3

p+ n0 e−

e+

µ−

π+ π0 π−

K+ K− K 0 K̄ 0

Λ0

∆++ ∆+ ∆0 ∆−

Σ+ Σ0 Σ−

Ξ+ Ξ0 Ξ−

Σ∗+ Σ∗0 Σ∗−

Ξ0 Ξ−

Ξ∗0 Ξ∗−

...

4

Eightfold way

5

Is CT the Gruppenpest of FP?

6

Is CT the Gruppenpest of FP?

• something new to learn

• abstract

• a little scary

• a good model

• helps explain what’s going on

• gives us new tools

7

Curry-Howard correspondence

Logic Programming

proposition type

proof program

Logic Programming

F Void

T ()

p ⇒ q p → q

¬p p → Void

p ∧ q (p,q)

p ∨ q Either p q

8

Curry-Howard correspondence

9

Curry-Howard-Lambek correspondence

Logic Types

Categories

“Computational Trinitarianism”

type theory → categorical model

internal language ← category

10

Preliminaries

CAUTION

Ride moves quickly and makes
sharp turns. Please keep arms

and legs within the car and
keep your seatbelt fastened.

11

I’ve used category theory. . .

But I’m not a category theorist.

12

All of?

The impossible is the only

thing worth attempting.

Raimondo Panikkar

13

14

So we’ll be experts in 30 mins?

15

All of
Basic
Categories

16

ABCs

17

18

19

Circle of life

life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

null

22.465351

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Circle of life universal constructions

Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

20

Basic

category

theory

Initial objectF -algebra

Universal

property

Universal

arrow

Universal

element

Representable

functor

Yoneda

Lemma
Presheaf

Limit

Product

Pushout

Equalizer

Adjunctions

Cartesian

closed

category

Free

Galois

connection

Monad

Eilenberg–

Moore

category

Kleisli

category

Algebras

for a

monad
End

End

calculus

Kan

extension

Density

monad

Day

convolution

21

All equivalent!

22

160

150
140 130

120

110

100

90

80

70

60
5040

30

20

10

0Initial object

Universal property

Representable functor

Limit

Adjunction

Monad

End

Kan extension

23

Categories, functors and natural

transformations

Categories

Ob C : Set

C (a, b) = Hom(a, b) : Set

◦ : C (b, c)× C (a, b)→ C (a, c) 1a ∈ C (a, a)

1b ◦ f = f = f ◦ 1a h ◦ (g ◦ f) = (h ◦ g) ◦ f

24

Categories

Ob C : Set C (a, b) = Hom(a, b) : Set

◦ : C (b, c)× C (a, b)→ C (a, c) 1a ∈ C (a, a)

1b ◦ f = f = f ◦ 1a h ◦ (g ◦ f) = (h ◦ g) ◦ f

24

Categories

Ob C : Set C (a, b) = Hom(a, b) : Set

◦ : C (b, c)× C (a, b)→ C (a, c) 1a ∈ C (a, a)

1b ◦ f = f = f ◦ 1a h ◦ (g ◦ f) = (h ◦ g) ◦ f

24

Commutative diagrams

a

b c

d

f

g

h

k

h ◦ g ◦ f = k

25

Opposite category

C op has the same objects as C

C op(a, b) = C (b, a)

Just flip the arrows.

26

Networks

27

Categories – macroscopic view

Set: sets and functions

Type: types and computable functions

Vect: vector spaces and linear maps

Mon: monoids and monoid maps

28

Categories – microscopic view

A category is an algebraic structure in its own right.

29

A set is a category with no arrows (except for identities).

30

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{}

A preorder is a category with at most one arrow between any two

objects.

Write

a ≤ b if Hom(a, b) is not empty. 31

Functors

32

Functors

A functor from C → D draws a picture of C in D.

F

F : ObC → ObD

F : C (a, b)→ D(Fa,Fb) i.e. fmap

F (1) = 1

F (f ◦ g) = F (f) ◦ F (g)

33

Functors

Doesn’t have to be an exact copy. It could

• miss some objects (not surjective on objects)

• collapse some objects (not injective on objects)

• miss some arrows in a homset (not full)

• collapse some arrows in a homset (not faithful)

34

c l a s s Functor (f :: ∗ → ∗) where

fmap :: (a→b) → f a → f b

35

Presheaf

F : C op → Set

36

Contravariant functors

A functor from C op → D is called a contravariant functor.

F (f ◦ g) = F (g) ◦ F (f)

37

Profunctors

C op × C → Set

38

Hom : C op × C → Set

C (−,−) : C op × C → Set

39

a b b’
f

Hom(a, b)

(f ◦−)

−−−−→ Hom(a, b′)

Hom(1, f) := (f ◦−)

40

a b b’
f

Hom(a, b)

(f ◦−)

−−−−→ Hom(a, b′)

Hom(1, f) := (f ◦−)

40

a b b’
f

Hom(a, b)
(f ◦−)−−−−→ Hom(a, b′)

Hom(1, f) := (f ◦−)

40

a ba’
f

Hom(a, b)
(−◦g)−−−−→ Hom(a′, b)

Hom(g , 1) := (− ◦ g)

41

Natural transformations

A natural transformation morphs one picture of C into another.

42

Natural transformations

We have to move every object, but we need to respect the

morphisms.

Following an arrow, then translating, should be the same as

translating, then following.

a

b

f

Fa

Fb

Ga

Gb

Ff Gf

na

nb

This condition is called naturality.
43

In Haskell we approximate naturality with polymorphism (a stricter

condition).

t y p e f g = ∀ a . f a → g a

44

Initial and terminal objects

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{}

45

1

0

46

data Void

a b s u r d :: Void → a

a b s u r d v = c a s e v o f {}

47

u n i q u e :: a → ()

u n i q u e = ()

48

Universal properties

3× 4

X ∩ Y

(a, b)

49

3 + 4

X ∪ Y

Either a b

50

p(t) = (x(t), y(t))

p : R→ R× R

x , y : R→ R

Hom(R,R)× Hom(R,R) ∼= Hom(R,R× R)

51

p(t) = (x(t), y(t))

p : R→ R× R

x , y : R→ R

Hom(R,R)× Hom(R,R) ∼= Hom(R,R× R)
51

Hom(x , a)× Hom(x , b) ∼= Hom(x , a× b)

Hom(a, x)× Hom(b, x) ∼= Hom(a + b, x)

52

a b
p

q

f g

A product of a and b

is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .

53

a b
p

q

f g

A product of a and b is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .

53

a b
p

q

f g

A product of a and b is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .

53

a b
p

q

f g

A product of a and b is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .

53

a b
p

q

f g

A product of a and b is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .

53

a b
p

q

f g

Hom(q, a)× Hom(q, b) ∼= Hom(q, a× b)

A product of a and b is an object p

with arrows (“projections”) to a and b

such that for any object q with arrows f , g to a and b

there exists a unique arrow from q to p, which has the property

that composing it with the projections gives back f and g .

53

a b

s

t

f g

A coproduct of a and b is an object s

with arrows (“injections”) from a and b

such that for any object t with arrows f , g from a and b

there exists a unique arrow from s to t, which has the property

that composing it with the injections gives back f and g .

54

a b

s

t

f g

Hom(a, t)× Hom(b, t) ∼= Hom(a + b, t)

A coproduct of a and b is an object s

with arrows (“injections”) from a and b

such that for any object t with arrows f , g from a and b

there exists a unique arrow from s to t, which has the property

that composing it with the injections gives back f and g .

54

Products in Type

(&&&) :: (a→ x) → (a→ y)→ a→ (x , y)

(&&&) f g a = (f a , g a)

s p l i t :: (a→ (x , y)) → (a→ x , a→ y)

s p l i t f = (f s t . f , snd . f)

55

Coproducts in Type

to :: (x→ a) → (y→ a) → E i t h e r x y → a

to f g e = c a s e e o f

L e f t x → f x

R i g h t y → g x

from :: (E i t h e r x y → a) → (x→a , y→ a)

from h = (h . L e f t , h . R i g h t)

56

Representable functors

Hom(a, x)× Hom(b, x) ∼= Hom(a + b, x)

Hom(x , a)× Hom(x , b) ∼= Hom(x , a× b)

These are isomorphisms of Set-valued functors

57

A functor isomorphic to Hom(−, r) or Hom(r ,−)

is called representable.

We say it is represented by r .

58

Hom(x , a)× Hom(x , b) ∼= Hom(x , a× b)

Hom(a, x)× Hom(b, x) ∼= Hom(a + b, x)

59

Haskell

No sums ⇒ no choices to be made.

A representable functor ≈ a structure with one fixed shape.

60

Streams

data Stream a = a :< Stream a

A stream is represented by the natural numbers.

N = 0, 1, 2, 3, . . .

Stream a ∼= Hom(N, a)

61

to :: Stream a → (N a t u r a l→ a)

to s n = s !! n

from :: (N a t u r a l→ a) → Stream a

from k = go 0

where

go i = k i :< go (i +1)

Apply from to id and you get

0, 1, 2, 3, 4, ...

We call this the universal element.

It’s the archetypal stream: the indexing type reified as data.

62

to :: Stream a → (N a t u r a l→ a)

to s n = s !! n

from :: (N a t u r a l→ a) → Stream a

from k = go 0

where

go i = k i :< go (i +1)

Apply from to id and you get

0, 1, 2, 3, 4, ...

We call this the universal element.

It’s the archetypal stream: the indexing type reified as data.

62

“represented by” = “indexed by”

63

Tuples

A tuple where both parts have the same type is representable.

(a, a) ∼= Hom (Choice, a)

data Cho ice = L |R

(L,R)

64

Binary streams

data Bin a = Bin a (Bin a) (Bin a)

A binary stream is represented by a list of left or right choices.

data Cho ice = L |R

t y p e Path = [Cho ice]

[]

[L]

[LL]

...
...

[LR]

...
...

[R]

[RL]

...
...

[RR]

...
...

65

Yoneda

Hom (Hom(r ,−),F) ∼= F (r) F : C → Set

Hom (Hom(−, r),F) ∼= F (r) F : C op → Set

Why?

It must send 1r : r → r to an element of F (r).

Naturality means there are no more choices to make.

Each element of F (r) defines a natural transformation.

66

Yoneda

Hom (Hom(r ,−),F) ∼= F (r) F : C → Set

Hom (Hom(−, r),F) ∼= F (r) F : C op → Set

Why?

It must send 1r : r → r to an element of F (r).

Naturality means there are no more choices to make.

Each element of F (r) defines a natural transformation.

66

Limits and colimits

a b
p

q

f g

67

F

68

? ?

· · ·

F

69

F

70

Terminal object

F

71

Equalizer

F f
g

72

Equalizer

F
f g

73

Equalizer

In Set

{x | f (x) = g(x)}

In Type

t y p e E q u a l i z e r f g x = (x , f x = g x)

74

Pullbacks

F

75

Pullbacks

In Set

{(x , y) | f (x) = g(y)}

e.g. f −1(Y) = {(x , y) | f (x) = y}

In Type

t y p e P u l l b a c k f g x = (x , y , f x = g y)

76

Colimits

Flip everything.

77

Coequalizer

In Set

X/f (a) ∼ g(a) for all a

78

Pushout

In Set

X t Y /f (a) ∼ g(a) for all a

79

A limit is a generalised product
where the projections must
satisfy some compatibility

conditions

A colimit is a generalised sum
where the injections are forced

to agree

80

If we have equalizers and
products,

we can build all limits

If we have coequalizers and
coproducts,

we can build all colimits

81

Adjunctions

C D

L

R

D(Lc , d) ∼= C (c ,Rd)

82

D(Lc , d) ∼= C (c ,Rd)

Vect
(
F{i , j},R3

) ∼= Set
(
{i , j},UR3

)
 1 4

2 5

3 6

←→
i 7→

 1

2

3

 , j 7→

 4

5

6




83

D(Lc , d) ∼= C (c ,Rd)

Type (a× b, c) ∼= Type (a, b → c)

c u r r y :: ((a , b) → c) → a → b → c

u n c u r r y :: (a → b → c) → (a , b) → c

84

Right adjoints preserve limits

Left adjoints preserve colimits

85

U1 ∼= 1

U(a × b) ∼= U(a)× U(b)

F0 ∼= 0

F (a + b) ∼= F (a) + F (b)

86

Monads and comonads

Ends and coends

Limits for profunctors?

87

a bf

S(a, a) S(b, b)

S(a, b)

S(1, f) S(f , 1)

88

a b cf g

S(a, a) S(b, b) S(c , c)

S(a, b) S(a, c) S(b, c)

89

S(a, a)

S(b, b)

S(a, b)πa πb

!

πa :

∫
c
S(c , c)→ S(a, a)

90

S(a, a)

S(b, b)

S(a, b)πa πb

!

πa :

∫
c
S(c , c)→ S(a, a)

90

S(a, a)

S(b, b)

S(a, b)πa πb

!

πa :

∫
c
S(c , c)→ S(a, a)

90

∫
a
S(a, a) ≈ data End s = End (∀a. s a a)

∫ a

S(a, a) ≈ data Coend s = ∀a. Coend (s a a)

p r o j :: End s → s b b

p r o j (End x) = x

i n j :: s b b → Coend s

i n j x = Coend x

91

(Co)end calculus

∫
a

∫
b
S(a, a, b, b) ∼=

∫
b

∫
a
S(a, a, b, b) ∼=

∫
(a,b)

S(a, a, b, b)

C

(∫ a

S(a, a), b

)
∼=
∫
a
C (S(a, a), b)

C

(
b,

∫
a
S(a, a)

)
∼=
∫
a
C (b,S(a, a))

F ∼=
∫
c

Hom (C (c ,−),Fc) ∼=
∫ c

F (c)× C (c ,−)

92

Natural transformations are ends

Nat(F ,G) =

∫
s

Hom(Fs,Gs)

93

Let’s prove that a → f b and r f are isomorphic types, where

type r x = (a, b → x).

Set(a,Fb)

∼= Set(a,

∫
x

Set(Set(b, x),Fx)) (Yoneda)

∼=
∫
x

Set(a, Set(Set(b, x),Fx)) (end preserves homsets)

∼=
∫
x

Set(a× Set(b, x),Fx) (uncurry)

∼=
∫
x

Set((a× Set(b,−))x ,Fx) (extract functor)

∼= Nat((a× Set(b,−)),F) (natural transformations as ends)

94

We can use this to show that (a,b → c) is isomomorphic to

∀ f . Functor f ⇒(a → f b) → f c

∫
F

Set(F(G ,F),HF) ∼= HG (Yoneda lemma)∫
F

Set(F(G ,F),Fc) ∼= Gx (choose H = −(c))∫
F

Set(F(a× Set(b,−),F),Fc) ∼= (a,Set(b, c)) (set G = (a× Set(b,−)))

∫
F

Set(Set(a,Fb),Fc)

∼=
∫
F

Set(F((a× Set(b,−)),F),Fc) (last slide)

∼= (a× Set(b, c)) (line above = Yoneda)

95

Lenses

(s → a,a → s → s) ∼= ∀ f . Functor f ⇒(a → f a) → s → f s

96

Kan extensions

C

D

E
F

G K?

97

Lan, Ran

98

c1 c2 c3 · · ·

C

d

Gc1 Gc2 Gc3 · · ·

D

Ld

Fc1 Fc2 Fc3 · · ·

E

99

c1 c2 c3 · · ·

C

d

Gc1 Gc2 Gc3 · · ·

D

Ld

Fc1 Fc2 Fc3 · · ·

E

99

c1 c2 c3 · · ·

C

d

Gc1 Gc2 Gc3 · · ·

D

Ld

Fc1 Fc2 Fc3 · · ·

E

99

c1 c2 c3 · · ·

C

d

Gc1 Gc2 Gc3 · · ·

D

Ld

Fc1 Fc2 Fc3 · · ·

E

99

c1 c2 c3 · · ·

C

d

Gc1 Gc2 Gc3 · · ·

D

Ld

Fc1 Fc2 Fc3 · · ·

E

99

c1 c2 c3 · · ·
C

d

Gc1 Gc2 Gc3 · · ·
D

Rd

Fc1 Fc2 Fc3 · · ·
E

100

(LanG F)(d) =

∫ c

D(Gc , d).Fc

(RanG F)(d) =

∫
c

Hom(D(d ,Gc),Fc)

data Lan g f d = ∀ c . Lan (g c → d) (f c)

newtype Ran g f d = Ran (∀ c . (d → g c) → f c)

101

The original Kan extension: geometric realisation

{a, b, c}{a, b, d}{a, c , d}{b, c, d}

{a, b}{a, c}{a, d}{b, c}{b, d}{c , d}

{a}{b}{c}{d}

{a, b, c , d} −→

ab

c

d

102

Day convolution

F ,G : C → Set

F � G : C × C → Set

(F � G)(c1, c2) := F (c1)× G (c2)

× : C × C → C

F ⊗ G := Lan×�

103

Day convolution

F ,G : C → Set

F � G : C × C → Set

(F � G)(c1, c2) := F (c1)× G (c2)

× : C × C → C

F ⊗ G := Lan×�

103

data Day f g c

= ∀ c1 c2 . Day (c1 → c2 → c) (f c1) (g c2)

104

Summary

Themes

• Arrows are more important than objects

• Duality

• Weakening adds structure

• Understanding is hard but proofs are easy c.f. number theory

105

Where to from here?

• Enriched categories

• Higher categories

• Topos theory

• . . .

106

Further reading/watching

• Eugenia Cheng, The Catsters (YouTube)

• Bartosz Milewski (videos and blogposts)

• comonad.com (Ed Kmett and Dan Doel)

• Emily Riehl, Category Theory in Context

• Tom Leinster, Basic Category Theory

• David Spivak, Category theory for the sciences

• Lawvere and Schanuel, Conceptual mathematics

• the nLab

107

http://www.youtube.com/user/TheCatsters
https://www.youtube.com/user/DrBartosz/videos
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
http://comonad.com/reader/category/category-theory/
http://www.math.jhu.edu/~eriehl/context/
http://www.maths.ed.ac.uk/~tl/bct/
https://github.com/mmai/Category-Theory-for-the-Sciences
https://www.amazon.com/Conceptual-Mathematics-First-Introduction-Categories/dp/0521894859/
https://ncatlab.org

References

• Categories for the working mathematician

• This is the (co)end, my only (co)friend.

• A representation theorem for second order functionals.

• Notions of computation as monoids.

108

	Preliminaries
	Categories, functors and natural transformations
	 Initial and terminal objects
	 Universal properties
	 Representable functors
	 Limits and colimits
	 Adjunctions
	 Monads and comonads
	 Ends and coends
	 Kan extensions
	Summary

	fd@my_sound:

